Contrastive-Learning-Based Time-Series Feature Representation for Parcel-Based Crop Mapping Using Incomplete Sentinel-2 Image Sequences

Author:

Zhou Ya’nan1ORCID,Wang Yan1,Yan Na’na2,Feng Li1,Chen Yuehong1,Wu Tianjun3ORCID,Gao Jianwei4,Zhang Xiwang5,Zhu Weiwei2

Affiliation:

1. College of Geography and Remote Sensing, Hohai University, Nanjing 211100, China

2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

3. School of Science, Chang’an University, Xi’an 710064, China

4. Institute of Spacecraft Application System Engineering, China Academy of Space Technology, Beijing 100081, China

5. Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China

Abstract

Parcel-based crop classification using multi-temporal satellite optical images plays a vital role in precision agriculture. However, optical image sequences may be incomplete due to the occlusion of clouds and shadows. Thus, exploring inherent time-series features to identify crop types from incomplete optical image sequences is a significant challenge. This study developed a contrastive-learning-based framework for time-series feature representation to improve crop classification using incomplete Sentinel-2 image sequences. Central to this method was the combined use of inherent time-series feature representation and machine-learning-based classifications. First, preprocessed multi-temporal Sentinel-2 satellite images were overlaid onto precise farmland parcel maps to generate raw time-series spectral features (with missing values) for each parcel. Second, an enhanced contrastive learning model was established to map the raw time-series spectral features to their inherent feature representation (without missing values). Thirdly, eXtreme Gradient-Boosting-based and Long Short-Term Memory-based classifiers were applied to feature representation to produce crop classification maps. The proposed method is further discussed and validated through parcel-based time-series crop classifications in two study areas (one in Dijon of France and the other in Zhaosu of China) with multi-temporal Sentinel-2 images in comparison to the existing methods. The classification results, demonstrating significant improvements greater than 3% in overall accuracy and 0.04 in F1 scores over comparison methods, indicate the effectiveness of the proposed contrastive-learning-based time-series feature representation for parcel-based crop classification utilizing incomplete Sentinel-2 image sequences.

Funder

Third Xinjiang Scientific Expedition Program

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3