Unsupervised Nonlinear Hyperspectral Unmixing with Reduced Spectral Variability via Superpixel-Based Fisher Transformation

Author:

Yin Zhangqiang1ORCID,Yang Bin1ORCID

Affiliation:

1. School of Computer Science and Technology, Donghua University, Shanghai 201620, China

Abstract

In hyperspectral unmixing, dealing with nonlinear mixing effects and spectral variability (SV) is a significant challenge. Traditional linear unmixing can be seriously deteriorated by the coupled residuals of nonlinearity and SV in remote sensing scenarios. For the simplification of calculation, current unmixing studies usually separate the consideration of nonlinearity and SV. As a result, errors individually caused by the nonlinearity or SV still persist, potentially leading to overfitting and the decreased accuracy of estimated endmembers and abundances. In this paper, a novel unsupervised nonlinear unmixing method accounting for SV is proposed. First, an improved Fisher transformation scheme is constructed by combining an abundance-driven dynamic classification strategy with superpixel segmentation. It can enlarge the differences between different types of pixels and reduce the differences between pixels corresponding to the same class, thereby reducing the influence of SV. Besides, spectral similarity can be well maintained in local homogeneous regions. Second, the polynomial postnonlinear model is employed to represent observed pixels and explain nonlinear components. Regularized by a Fisher transformation operator and abundances’ spatial smoothness, data reconstruction errors in the original spectral space and the transformed space are weighed to derive the unmixing problem. Finally, this problem is solved by a dimensional division-based particle swarm optimization algorithm to produce accurate unmixing results. Extensive experiments on synthetic and real hyperspectral remote sensing data demonstrate the superiority of the proposed method in comparison with state-of-the-art approaches.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3