Automatic Detection of VLF Tweek Signals Based on the YOLO Model

Author:

Xu Wei12ORCID,Ma Wenchen1,Wang Shiwei1ORCID,Gu Xudong12ORCID,Ni Binbin1,Cheng Wen1,Feng Jingyuan1,Wang Qingshan1,Hu Mengyao1

Affiliation:

1. Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China

2. Hubei Luojia Laboratory, Wuhan 430072, China

Abstract

Tweek signals are a special type of VLF (very low frequency) pulse, originally produced by lightning discharge, which becomes dispersive after repetitive bounces within the waveguide between the Earth’s surface and lower ionosphere. As such, tweek signals carry critical information about the region near the reflection height of the VLF waves, namely the D-region ionosphere. Although tweek measurements have been widely utilized in studies of the D-region ionosphere and lightning discharge, few statistical studies have been conducted, mainly due to the difficulty of manually identifying tweek signals from the enormous amount of VLF data with heavy noise. Considering the importance of tweek signals and the lack of a high-precision detection model, in this study, we propose a method to automatically and accurately pick out tweek signals from VLF measurements. This method is explicitly developed based on the you only look once (YOLO) model and a post-tracing process. Using a total of 2495 randomly selected VLF spectrogram images as the testing set, we evaluated the performance of this method. The precision and recall are found to be 92.0% and 89.2% for the first-order mode, and 97.5% and 86.7% for the first-two-order mode tweek, respectively. The time needed to process 10-s VLF measurements with a cadence of 4 μs is only 6.5 s, allowing for identifying the tweek signals from continuous VLF measurements in real time. Therefore, this method represents a reliable means to automatically detect tweek signals and enables the opportunity to statistically investigate the D-region ionosphere and lightning discharge via these signals.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

open fund of Hubei Luojia Laboratory

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3