Overlapping Community Detection Based on Membership Degree Propagation

Author:

Gao Rui,Li Shoufeng,Shi XiaohuORCID,Liang Yanchun,Xu DongORCID

Abstract

A community in a complex network refers to a group of nodes that are densely connected internally but with only sparse connections to the outside. Overlapping community structures are ubiquitous in real-world networks, where each node belongs to at least one community. Therefore, overlapping community detection is an important topic in complex network research. This paper proposes an overlapping community detection algorithm based on membership degree propagation that is driven by both global and local information of the node community. In the method, we introduce a concept of membership degree, which not only stores the label information, but also the degrees of the node belonging to the labels. Then the conventional label propagation process could be extended to membership degree propagation, with the results mapped directly to the overlapping community division. Therefore, it obtains the partition result and overlapping node identification simultaneously and greatly reduces the computational time. The proposed algorithm was applied to a synthetic Lancichinetti–Fortunato–Radicchi (LFR) dataset and nine real-world datasets and compared with other up-to-date algorithms. The experimental results show that our proposed algorithm is effective and outperforms the comparison methods on most datasets. Our proposed method significantly improved the accuracy and speed of the overlapping node prediction. It can also substantially alleviate the computational complexity of community structure detection in general.

Funder

China Scholarship Council

National Natural Science Foundation of China

National Institutes of Health

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3