Author:
Feng Kai,Pi Xitian,Liu Hongying,Sun Kai
Abstract
Myocardial infarction is one of the most threatening cardiovascular diseases for human beings. With the rapid development of wearable devices and portable electrocardiogram (ECG) medical devices, it is possible and conceivable to detect and monitor myocardial infarction ECG signals in time. This paper proposed a multi-channel automatic classification algorithm combining a 16-layer convolutional neural network (CNN) and long-short term memory network (LSTM) for I-lead myocardial infarction ECG. The algorithm preprocessed the raw data to first extract the heartbeat segments; then it was trained in the multi-channel CNN and LSTM to automatically learn the acquired features and complete the myocardial infarction ECG classification. We utilized the Physikalisch-Technische Bundesanstalt (PTB) database for algorithm verification, and obtained an accuracy rate of 95.4%, a sensitivity of 98.2%, a specificity of 86.5%, and an F1 score of 96.8%, indicating that the model can achieve good classification performance without complex handcrafted features.
Funder
National Natural Science Foundation of China
Chongqing technological Innovation and Application demonstration Project
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献