Statistical Patterns of Transmission Losses of Low-Frequency Sound in Shallow Sea Waveguides with Gaussian and Non-Gaussian Fluctuations

Author:

Zhu Fengqin,Gulin Oleg E.ORCID,Yaroshchuk Igor O.

Abstract

Based on the local mode method, the problem of the average intensity (transmission loss) behavior in shallow waveguides with losses in the bottom and fluctuations of the speed of sound in water is considered. It was previously shown that the presence in a waveguide with absorbing penetrable bottom of 2D random inhomogeneities of the speed of sound leads to the appearance of strong fluctuations in the acoustic field already at relatively small distances from the sound source. One of the most important and interesting manifestations of this is the slowing down of the average intensity of the acoustic field compared with a waveguide, which has no such random inhomogeneities of the speed of sound. This paper presents the results of a numerical analysis of the decay of the average field intensity in the presence of both Gaussian and non-Gaussian fluctuations in the speed of sound. It is shown that non-Gaussian fluctuations do not fundamentally change the conclusion about reducing losses during the propagation of a sound signal but can enhance this effect.

Funder

National Natural Science Foundation of China

Russian State Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Effects of the Turbulent Atmosphere on Wave Propagation;Tatarskii,1971

2. Principles of Radiophysics;Rytov,1989

3. Sound propagation through a fluctuating stratified ocean: Theory and observation

4. Sound Transmission through a Fluctuating Ocean,1979

5. Fundamentals of Ocean. Acoustics;Brekhovskikh,1982

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3