Box-Jenkins Transfer Function Modelling for Reliable Determination of VO2 Kinetics in Patients with COPD

Author:

Buekers JorenORCID,Theunis Jan,Peña Fernández Alberto,Wouters Emiel F. M.,Spruit Martijn A.ORCID,De Boever PatrickORCID,Aerts Jean-Marie

Abstract

Oxygen uptake (VO2) kinetics provide information about the ability to respond to the increased physical load during a constant work rate test (CWRT). Box-Jenkins transfer function (BJ-TF) models can extract kinetic features from the phase II VO2 response during a CWRT, without being affected by unwanted noise contributions (e.g., phase I contribution or measurement noise). CWRT data of 18 COPD patients were used to compare model fits and kinetic feature values between BJ-TF models and three typically applied exponential modelling methods. Autocorrelation tests and normalised root-mean-squared error values (BJ-TF: 2.8 ± 1.3%; exponential methods A, B and C: 10.5 ± 5.8%, 11.3 ± 5.2% and 12.1 ± 7.0%; p < 0.05) showed that BJ-TF models, in contrast to exponential models, could account for the most important noise contributions. This led to more reliable kinetic feature values compared to methods A and B (e.g., mean response time (MRT), BJ-TF: 74 ± 20 s; methods A-B: 100 ± 56 s–88 ± 52 s; p < 0.05). Only exponential modelling method C provided kinetic feature values comparable to BJ-TF features values (e.g., MRT: 75 ± 20 s). Based on theoretical considerations, we recommend using BJ-TF models, rather than exponential models, for reliable determinations of VO2 kinetics.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Global strategy for the diagnosis, management, and prevention of Chronic Obstructive Pulmonary Disease—2019 Report 2019https://goldcopd.org/wp-content/uploads/2018/11/GOLD-2019-v1.7-FINAL-14Nov2018-WMS.pdf

2. An official European Respiratory Society statement on physical activity in COPD

3. ATS/ACCP Statement on Cardiopulmonary Exercise Testing

4. Towards an understanding of the mechanistic bases of VO2 kinetics;Poole;Compr. Physiol.,2012

5. Ventilatory and gas exchange kinetics during exercise in chronic airways obstruction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3