Author:
Zhang Yong,Wang Yi,Wang Yizhu,Fang Bin,Yu Wei,Long Hongyu,Lei Hancheng
Abstract
Data imbalance is often encountered in deep learning process and is harmful to model training. The imbalance of hard and easy samples in training datasets often occurs in the segmentation tasks from Contrast Tomography (CT) scans. However, due to the strong similarity between adjacent slices in volumes and different segmentation tasks (the same slice may be classified as a hard sample in liver segmentation task, but an easy sample in the kidney or spleen segmentation task), it is hard to solve this imbalance of training dataset using traditional methods. In this work, we use a pre-training strategy to distinguish hard and easy samples, and then increase the proportion of hard slices in training dataset, which could mitigate imbalance of hard samples and easy samples in training dataset, and enhance the contribution of hard samples in training process. Our experiments on liver, kidney and spleen segmentation show that increasing the ratio of hard samples in the training dataset could enhance the prediction ability of model by improving its ability to deal with hard samples. The main contribution of this work is the application of pre-training strategy, which enables us to select training samples online according to different tasks and to ease data imbalance in the training dataset.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献