CvAMoS—Event Abstraction Using Contextual Information

Author:

Di Federico Gemma1ORCID,Burattin Andrea1ORCID

Affiliation:

1. Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Abstract

Process mining analyzes events that are logged during the execution of a process, with the aim of gathering useful information and knowledge. Process discovery algorithms derive process models that represent these processes. The level of abstraction at which the process model is represented is reflected in the granularity of the event log. When a process is captured by the usage of sensor systems, process activities are recorded at the sensor-level in the form of sensor readings, and are therefore too fine-grained and non-explanatory. To increase the understandability of the process model, events need to be abstracted into higher-level activities that provide a more meaningful representation of the process. The abstraction becomes more relevant and challenging when the process involves human behavior, as the flexible nature of human actions can make it harder to identify and abstract meaningful activities. This paper proposes CvAMoS, a trace-based approach for event abstraction, which focuses on identifying motifs while taking context into account. A motif is a recurring sequence of events that represents an activity that took place under specific circumstances depicted by the context. Context information is logged in the event log in the form of environmental sensor readings (e.g., the temperature and light sensors). The presented algorithm uses a distance function to deal with the variability in the execution of activities. The result is a set of meaningful and interpretable motifs. The algorithm has been tested on both synthetic and real datasets, and compared to the state of the art. CvAMoS is implemented as a Java application and the code is freely available.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3