Artificial-Intelligence-Based Charger Deployment in Wireless Rechargeable Sensor Networks

Author:

Cho Hsin-Hung1,Chien Wei-Che2,Tseng Fan-Hsun3ORCID,Chao Han-Chieh45ORCID

Affiliation:

1. Department of Computer Science and Information Engineering, National Ilan University, Yilan 260, Taiwan

2. Department of Computer Science and Information Engineering, National Dong Hwa University, Hualien 974, Taiwan

3. Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan

4. Department of Electrical Engineering, National Dong Hwa University, Hualien 974, Taiwan

5. Institute of Computer Science and Innovation, UCSI University, Kuala Lumpur 5600, Malaysia

Abstract

To extend a network’s lifetime, wireless rechargeable sensor networks are promising solutions. Chargers can be deployed to replenish energy for the sensors. However, deployment cost will increase when the number of chargers increases. Many metrics may affect the final policy for charger deployment, such as distance, the power requirement of the sensors and transmission radius, which makes the charger deployment problem very complex and difficult to solve. In this paper, we propose an efficient method for determining the field of interest (FoI) in which to find suitable candidate positions of chargers with lower computational costs. In addition, we designed four metaheuristic algorithms to address the local optima problem. Since we know that metaheuristic algorithms always require more computational costs for escaping local optima, we designed a new framework to reduce the searching space effectively. The simulation results show that the proposed method can achieve the best price–performance ratio.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Method to Optimize Deployment of Directional Sensors for Coverage Enhancement in the Sensing Layer of IoT;Future Internet;2024-08-22

2. An Integrated Mobility-Oriented Wireless Charging Scheme for Wireless Sensor Network;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3