Employing Tank Constraints to Present Total Cost and Water Age Trade-Offs in Optimal Operation of Water Distribution Systems

Author:

Shmaya Tomer1,Ostfeld Avi1ORCID

Affiliation:

1. Civil and Environmental Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel

Abstract

Water distribution systems (WDSs) are massive infrastructure systems designed to supply water from sources to consumers. The optimal operation problem of WDSs is the problem of determining pump and tank operation to meet the consumers’ demands with minimal operating cost, under different constraints, which often include hydraulic feasibility, pressure boundaries, and water quality standards. The water quality aspect of WDSs’ operation poses significant challenges due to its complex mathematical nature. Determined by mixing in the systems’ nodes, it is affected by flow directions, which are subject to change based on the hydraulic state of the system and are therefore difficult to either predict, control, or be included in an analytical model used for optimization. Water age, which is defined as the time water travels in the system until reaching the consumer, is often used as a general water quality indicator—high values of water age imply low water quality, whereas low values of water age usually mean fresher, cleaner, and safer water. In this work, we present the effects that tank operation has on water age. As tanks contain large amounts of water for long periods of time, water tends to age there significantly, which translates into older water being supplied to consumers. By constraining the tank operation, we aim to present the trade-off between water age, tank operation, and operational cost in the WDS optimal operation problem and provide an operational tool that could assist system operators to decide how to operate their system, based on their budget and desired water age boundary. The analysis is applied to three case studies that vary in size and complexity, using MATLAB version R2021b and EPANET 2.2. The presented results show an ability to mitigate high water age in water networks through tank constraints, which varies in accordance with the system’s complexity and tank dominance in supply. The importance of a visual tool that serves as a guide for operators to tackle the complex problem of controlling water age is demonstrated as well.

Funder

Bernard M. Gordon Centre for Systems Engineering at the Technion

United States–Israel Binational Science Foundation

Publisher

MDPI AG

Reference20 articles.

1. Understanding distribution system water quality;Besner;J. AWWA,2001

2. Kim, J.H., Tran, T.V., and Chung, G. (2010). Optimization of water quality sensor locations in water distribution systems considering imperfect mixing. Water Distribution Systems Analysis, ASCE.

3. Drinking water disinfection byproducts: Review and approach to toxicity evaluation;Boorman;Environ. Health Perspect.,1999

4. Modeling residual chlorine response to a microbial contamination event in drinking water distribution systems;Helbling;J. Environ. Eng.,2009

5. A review of modeling water quality in Distribution Systems;Ostfeld;Urban Water J.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3