Urban Flooding Risk Assessment in the Rural-Urban Fringe Based on a Bayesian Classifier

Author:

Wang Mo1ORCID,Fu Xiaoping1,Zhang Dongqing2,Chen Furong1,Su Jin3,Zhou Shiqi4,Li Jianjun1ORCID,Zhong Yongming2,Tan Soon Keat5

Affiliation:

1. College of Architecture and Urban Planning, Guangzhou University, Guangzhou 510006, China

2. Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China

3. Faculty of Civil Engineering and Built Environment, University Tun Hussein Onn, Parit Raja 86400, Johor, Malaysia

4. College of Design and Innovation, Tongji University, Shanghai 200093, China

5. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

Urban flooding disasters have become increasingly frequent in rural-urban fringes due to rapid urbanization, posing a serious threat to the aquatic environment, life security, and social economy. To address this issue, this study proposes a flood disaster risk assessment framework that integrates a Weighted Naive Bayesian (WNB) classifier and a Complex Network Model (CNM). The WNB is employed to predict risk distribution according to the risk factors and flooding events data, while the CNM is used to analyze the composition and correlation of the risk attributes according to its network topology. The rural-urban fringe in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) is used as a case study. The results indicate that approximately half of the rural-urban fringe is at medium flooding risk, while 25.7% of the investigated areas are at high flooding risk. Through driving-factor analysis, the rural-urban fringe of GBA is divided into 12 clusters driven by multiple factors and 3 clusters driven by a single factor. Two types of cluster influenced by multiple factors were identified: one caused by artificial factors such as road density, fractional vegetation cover, and impervious surface percentage, and the other driven by topographic factors, such as elevation, slope, and distance to waterways. Single factor clusters were mainly based on slope and road density. The proposed flood disaster risk assessment framework integrating WNB and CNM provides a valuable tool to identify high-risk areas and driving factors, facilitating better decision-making and planning for disaster prevention and mitigation in rural-urban fringes.

Funder

Natural Science Foundation of Guangdong Province, China

Science and Technology Program of Guangzhou

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3