Investigation into the Effects of Backrest Angle and Stick Location on Female Strength

Author:

Lo Victor Ei-WenORCID,Chao Shu-Min

Abstract

Objectives: The purpose of this study was to investigate the effects of backrest angle and hand maneuver direction on maximum hand strength and to recommend a strength value for the hand-controlled stick of an aircraft. Methods: Forty-eight female subjects were recruited to perform simulated forward–backward and adduction–abduction maneuvers using control sticks. Each subject was free from musculoskeletal disorders and pain. The independent variables included four control maneuvers (forward, backward, adduction, abduction), two right-hand control stick locations (central, side), and three backrest angles (90°, 103°, 108°). The dependent variable was maximum hand strength. Results: The maximum strength for forward maneuvers with both central and side sticks was strongest at a 90° backrest angle (p < 0.001). The maximum strength for adduction maneuvers with both central and side sticks was also strongest at a 90° backrest angle (p < 0.001). On the other hand, the highest strength was observed at a 108° backrest angle when pulling the stick backward (p < 0.001). The abduction strength was significantly stronger than the adduction strength with a central stick (p < 0.001), but the adduction strength was significantly stronger than the abduction strength with a side stick (p < 0.001–p = 0.017). The forward and abduction strength were significantly different in different locations (p < 0.001). The recommended strength in the Code of Federal Regulations (CFR) by the US FAA is higher than the strength values observed in this study. Conclusions: The backrest angle, directions, and location affected the muscular strength. The recommended values should be reevaluated and adjusted for Taiwanese pilots.

Funder

Ministry of Science and Technology, Republic of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference42 articles.

1. MIL-STD-1472G. Design Criteria Standard: Human Engineering,2012

2. Foot Forces Exerted at Various Aircraft Brake-Pedal Angles

3. A Study of Muscle Forces and Fatigue;Hunsicker,1957

4. Human Muscular Strength;Laubach,1978

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3