Toxic Metals and Metalloids in Hassawi Brown Rice: Fate during Cooking and Associated Health Risks

Author:

AlMulla Abdulaziz AbdulrahmanORCID,Dahlawi SaadORCID,Randhawa Muhammad AtifORCID,Zaman Qamar uzORCID,Chen YinglongORCID,Faraj Turki Kh.

Abstract

Rice has been a dietary staple for centuries, providing vital nutrients to the human body. Brown rice is well known for its nutrient-dense food profile. However, owing to multiple causes (anthropogenic and non-anthropogenic), it can also be a potential source of toxic heavy metals in the diet. Brown Hassawi rice samples were collected from the Al-Ahsa region and analyzed for its content of toxic metals. The results reveal that all the tested metals varied significantly in the brown rice samples, while As and Pb in all three samples exceeded their respective maximum allowable limits (MALs), followed by Cd, which nearly approached the MAL in two samples out of three. Brown rice samples were cooked in rice:water systems, viz., low rice:water ratios (1:2.5, 1:3.5) and high rice:water ratios (1:5, 1:6), along with soaking as a pre-treatment. Soaking was unproductive in removing the heavy metals from the rice, whereas cooking dissipated all metals from the rice, except for Cd, which was statistically non-significant. The high-water cooking of the rice was more effective in the dissipation of metals from the rice as compared to low-water cooking conditions. Through the consumption of rice, the estimated daily intake (EDI) of heavy metals is 162 g per person per day for As, which is above the provisional maximum tolerable daily intake (PMTDI) regardless of cooking circumstances. The hazard risk index (HRI) also highlighted the fact that As can be a potential health hazard to rice consumers in the Al-Ahsa region of Saudi Arabia. These results indicate the potential health risks caused by the consumption of this rice by humans. Regular monitoring is recommended to manage and control elevated concentrations and related health hazards as a result of the use of Hassawi rice contaminated by the accumulation of metals and metalloids.

Funder

Researchers Supporting Project at King Saud University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3