What Are the Characteristics of User Texts and Behaviors in Chinese Depression Posts?

Author:

Liu Jingfang,Shi Mengshi

Abstract

Social media platforms provide unique insights into mental health issues, but a large number of related studies have focused on English text information. The purpose of this paper is to identify the posting content and posting behaviors of users with depression on Chinese social media. These clues may suggest signs of depression. We created two data sets consisting of 130 users with diagnosed depression and 320 other users that were randomly selected. By comparing and analyzing the two data sets, we can observe more closely how users reveal their signs of depression on Chinese social platforms. The results show that the distribution of some Chinese speech users with depression is significantly different from that of other users. Emotional sadness, fear and disgust are more common in the depression class. For personal pronouns, negative words and interrogative words, there are also great differences between the two data sets. Using topic modeling, we found that patients mainly discussed seven topics: negative emotion fluctuation, disease treatment and somatic responses, sleep disorders, sense of worthlessness, suicidal extreme behavior, seeking emotional support and interpersonal communication. The depression class post negative polarity posts much more frequently than other users. The frequency and characteristics of posts also reveal certain characteristics, such as sleep problems and reduced self-disclosure. In this study, we used Chinese microblog data to conduct a detailed analysis of the users showing depression signs, which helps to identify more patients with depression. At the same time, the study can provide a further theoretical basis for cross-cultural research of different language groups in the field of psychology.

Funder

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3