Migration of Trivalent Praseodymium from Tombarthite Sewage by Microtubule Ultrafiltration Reactor with Organophosphorus in Fuel Oil

Author:

Pei Liang,Wang Liming

Abstract

A microtubule ultrafiltration reactor (MUFR), with an organophosphorus system containing a sewage section with buffer liquid acetic acid and an enrichment section with aqua fortis liquid and organophosphorus dissolved in fuel oil, has been studied for praseodymium(III) migration. Many factors of praseodymium(III) migration using MUFR need to be explored, including hydrogen ion molarity (or pH), cinit of praseodymium(III), the different ionic strengths of rare-earth mine sewage, the volume ratio of organophosphorus fuel oil and aqua fortis liquid (O/A), aqua fortis’ molarity, organophosphorus’ molarity, and the effects of different acid liquids in the enrichment section on praseodymium(III) migration with MUFR. The virtues of MUFR compared to conventional migration were explored. The effects of the hydrodynamic properties (stability and flow velocity) and UF system parameters (internal diameter of the microtubule, tubule shell thickness, void ratio), etc., on the mass migration performance of the MUFR process for praseodymium(III) migration were also studied. The experimental results show that the best migration prerequisites of praseodymium(III) were obtained as follows: an aqua fortis molarity of 4.00 mol/L, an organophosphorus molarity of 0.200 mol/L, an O/A of 0.6 in the enrichment section, and a pH value of 4.80 in the sewage section. The ionic strength of rare-earth mine sewage had no obvious effect on praseodymium(III) migration. When the cinit of praseodymium(III) molarity was 1.58 × 10−4 mol/L, the migration percentage of praseodymium(III) reached 95.2% in 160 min.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3