Urban Inundation under Different Rainstorm Scenarios in Lin’an City, China

Author:

Chen Yan,Hou HaoORCID,Li Yao,Wang LuoyangORCID,Fan Jinjin,Wang Ben,Hu TangaoORCID

Abstract

Under the circumstances of global warming and rapid urbanization, damage caused by urban inundation are becoming increasingly severe, attracting the attention of both researchers and governors. The accurate simulation of urban inundation is essential for the prevention of inundation hazards. In this study, a 1D pipe network and a 2D urban inundation coupling model constructed by InfoWorks ICM was used to simulate the inundation conditions in the typical urbanized area in the north of Lin’an. Two historical rainfall events in 2020 were utilized to verify the modeling results. The spatial–temporal variation and the causes of urban inundation under different designed rainfalls were studied. The results were as follows: (1) The constructed model had a good simulation accuracy, the Nash–Sutcliffe efficiency coefficient was higher than 0.82, R2 was higher than 0.87, and the relative error was ±20%. (2) The simulation results of different designed rainfall scenarios indicated that the maximum inundation depth and inundation extent increased with the increase in the return period, rainfall peak position coefficient, and rainfall duration. According to the analysis results, the urban inundation in Lin’an is mainly affected by topography, drainage network (spatial distribution and pipe diameter), and rainfall patterns. The results are supposed to provide technical support and a decision-making reference for the urban management department of Lin’an to design inundation prevention measures.

Funder

Zhejiang Provincial Natural Science Foundation

Science and Technology Program of Hangzhou

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3