Neutralization and Improvement of Bauxite Residue by Saline-Alkali Tolerant Bacteria

Author:

Lv Lv,Qiu Kunyan,Ge Shiji,Jiao Zhiqiang,Gao Chenyang,Fu Haiguang,Su RongkuiORCID,Liu Zhongkai,Wang Yulong,Wang Yangyang

Abstract

The high salt-alkalinity of bauxite residue (BR) hinders plant growth and revegetation of bauxite residue disposal areas (BRDA), which cause serious potential environmental and ecological risks. Bioneutralization is a promising method for improving the properties of BR and plant colonization. In the present study, a strong saline-alkali tolerant bacteria (ZH-1) was isolated from aged BR and identified as Bacillus sp. The medium of ZH-1 was optimized by orthogonal tests, and ZH-1 could decrease the medium pH from 11.8 to 6.01 (agitated culture) and 6.48 (static culture) by secretion of citric acid, oxalic acid and tartaric acid. With the inoculation of ZH-1, the pH of BR decreased from 11.6 to 8.76, and the water-soluble salt in BR increased by 68.11%. ZH-1 also changed the aggregate size distribution of BR, the mechanical-stable aggregates and water-stable aggregates increased by 18.76% and 10.83%, respectively. At the same time, the stability of the aggregates obviously increased and the destruction rate decreased from 94.37% to 73.46%. In addition, the microbial biomass carbon increased from 425 to 2794 mg/kg with the inoculation of ZH-1. Bacterial community analysis revealed that Clostridia, Bacilli, Gammaproteobacteria, Betaproteobacteria and Alphaproteobacteria were the main classes in the naturalized BR, and the inoculation of ZH-1 increased the diversity of bacteria in the BR. Overall, ZH-1 has great potential for neutralization and improvement the properties of BR and may be greatly beneficial for the revegetation of BRDA.

Funder

Science and Technology Development Project of Henan Province

China Postdoctoral Science Foundation

China Astronaut Research and Training Center

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3