Identification of Typical Ecosystem Types by Integrating Active and Passive Time Series Data of the Guangdong–Hong Kong–Macao Greater Bay Area, China

Author:

Li ChanglongORCID,Wang Yan,Gao Zhihai,Sun BinORCID,Xing He,Zang Yu

Abstract

The identification of ecosystem types is important in ecological environmental assessment. However, due to cloud and rain and complex land cover characteristics, commonly used ecosystem identification methods have always lacked accuracy in subtropical urban agglomerations. In this study, China’s Guangdong–Hong Kong–Macao Greater Bay Area (GBA) was taken as a study area, and the Sentinel-1 and Sentinel-2 data were used as the fusion of active and passive remote sensing data with time series data to distinguish typical ecosystem types in subtropical urban agglomerations. Our results showed the following: (1) The importance of different features varies widely in different types of ecosystems. For grassland and arable land, two specific texture features (VV_dvar and VH_diss) are most important; in forest and mangrove areas, synthetic-aperture radar (SAR) data for the months of October and September are most important. (2) The use of active time series remote sensing data can significantly improve the classification accuracy by 3.33%, while passive time series remote sensing data improves by 4.76%. When they are integrated, accuracy is further improved, reaching a level of 84.29%. (3) Time series passive data (NDVI) serve best to distinguish grassland from arable land, while time series active data (SAR data) are best able to distinguish mangrove from forest. The integration of active and passive time series data also improves precision in distinguishing vegetation ecosystem types, such as forest, mangrove, arable land, and, especially, grassland, where the accuracy increased by 21.88%. By obtaining real-time and more accurate land cover type change information, this study could better serve regional change detection and ecosystem service function assessment at different scales, thereby supporting decision makers in urban agglomerations.

Funder

Civil Aerospace Pre-research Project

Major Special Project of High-Resolution Earth Observation System

Guangdong Provincial General University Young Innovative Talents Project

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3