Accuracy of Vegetation Indices in Assessing Different Grades of Grassland Desertification from UAV

Author:

Xu Xue,Liu Luyao,Han Peng,Gong Xiaoqian,Zhang QingORCID

Abstract

Grassland desertification has become one of the most serious environmental problems in the world. Grasslands are the focus of desertification research because of their ecological vulnerability. Their application on different grassland desertification grades remains limited. Therefore, in this study, 19 vegetation indices were calculated for 30 unmanned aerial vehicle (UAV) visible light images at five grades of grassland desertification in the Mu Us Sandy. Fractional Vegetation Coverage (FVC) with high accuracy was obtained through Support Vector Machine (SVM) classification, and the results were used as the reference values. Based on the FVC, the grassland desertification grades were divided into five grades: severe (FVC < 5%), high (FVC: 5–20%), moderate (FVC: 21–50%), slight (FVC: 51–70%), and non-desertification (FVC: 71–100%). The accuracy of the vegetation indices was assessed by the overall accuracy (OA), the kappa coefficient (k), and the relative error (RE). Our result showed that the accuracy of SVM-supervised classification was high in assessing each grassland desertification grade. Excess Green Red Blue Difference Index (EGRBDI), Visible Band Modified Soil Adjusted Vegetation Index (V-MSAVI), Green Leaf Index (GLI), Color Index of Vegetation Vegetative (CIVE), Red Green Blue Vegetation Index (RGBVI), and Excess Green (EXG) accurately assessed grassland desertification at severe, high, moderate, and slight grades. In addition, the Red Green Ratio Index (RGRI) and Combined 2 (COM2) were accurate in assessing severe desertification. The assessment of the 19 indices of the non-desertification grade had low accuracy. Moreover, our result showed that the accuracy of SVM-supervised classification was high in assessing each grassland desertification grade. This study emphasizes that the applicability of the vegetation indices varies with the degree of grassland desertification and hopes to provide scientific guidance for a more accurate grassland desertification assessment.

Funder

Major Program of Inner Mongolia

Cooperation project of science and technology promotion in Inner Mongolia

Key Science and Technology Program of Inner Mongolia

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3