PM2.5 Concentrations Variability in North China Explored with a Multi-Scale Spatial Random Effect Model

Author:

Zhang Hang,Liu Yong,Yang DongyangORCID,Dong Guanpeng

Abstract

Compiling fine-resolution geospatial PM2.5 concentrations data is essential for precisely assessing the health risks of PM2.5 pollution exposure as well as for evaluating environmental policy effectiveness. In most previous studies, global and local spatial heterogeneity of PM2.5 is captured by the inclusion of multi-scale covariate effects, while the modelling of genuine scale-dependent variabilities pertaining to the spatial random process of PM2.5 has not yet been much studied. Consequently, this work proposed a multi-scale spatial random effect model (MSSREM), based a recently developed fixed-rank Kriging method, to capture both the scale-dependent variabilities and the spatial dependence effect simultaneously. Furthermore, a small-scale Monte Carlo simulation experiment was conducted to assess the performance of MSSREM against classic geospatial Kriging models. The key results indicated that when the multiple-scale property of local spatial variabilities were exhibited, the MSSREM had greater ability to recover local- or fine-scale variations hidden in a real spatial process. The methodology was applied to the PM2.5 concentrations modelling in North China, a region with the worst air quality in the country. The MSSREM provided high prediction accuracy, 0.917 R-squared, and 3.777 root mean square error (RMSE). In addition, the spatial correlations in PM2.5 concentrations were properly captured by the model as indicated by a statistically insignificant Moran’s I statistic (a value of 0.136 with p-value > 0.2). Overall, this study offers another spatial statistical model for investigating and predicting PM2.5 concentration, which would be beneficial for precise health risk assessment of PM2.5 pollution exposure.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3