Abstract
Analysis of the robustness and vulnerability of metro networks has great implications for public transport planning and emergency management, particularly considering passengers’ dynamic behaviors. This paper presents an improved coupled map lattices (CMLs) model based on graph attention networks (GAT) to study the cascading failure process of metro networks. The proposed model is applied to the Shanghai metro network using the automated fare collection (AFC) data, and the passengers’ dynamic behaviors are simulated by GAT. The quantitative cascading failure analysis shows that Shanghai metro network is robust to random attacks, but fragile to intentional attacks. Moreover, there is an approximately normal distribution between instant cascading failure speed and time step and the perturbation in a station which leads to steady state is approximately a constant. The result shows that a station surrounded by other densely distributed stations can trigger cascading failure faster and the cascading failure triggered by low-level accidents will spread in a short time and disappear quickly. This study provides an effective reference for dynamic safety evaluation and emergency management in metro networks.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference41 articles.
1. Resiliency assessment of urban rail transit networks: Shanghai metro as an example
2. EFFECT OF ATTACK ON SCALE-FREE NETWORKS DUE TO CASCADING FAILURE
3. Petersburg Metro Explosion: At Least 11 Dead in Russia Blasthttps://edition.cnn.com/2017/04/03/europe/st-petersburg-russia-explosion
4. Cascading failures in coupled map lattices
5. Graph Attention Networks;Velikovi;arXiv,2017
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献