Effects of Radiant Floor Heating Integrated with Natural Ventilation on Flow and Dispersion in a Newly Decorated Residence

Author:

Cui Peng-Yi,Wang Jia-Qi,Yang Feng,Zhao Qing-Xia,Huang Yuan-Dong,Yang Yong,Tao Wen-Quan

Abstract

To date, few studies have been conducted on the characteristics of flow and dispersion caused by indoor radiant floor heating integrated with natural ventilation. In this study, we employed reduced−scale numerical models validated by wind−tunnel experiments to investigate the influence of radiant floor heating integrated with natural ventilation on airflow, heat transfer, and pollutant dispersion within an isolated building. The Richardson number (Ri) was specified to characterize the interaction between the inflow inertia force and the buoyancy force caused by radiant floor heating. Several Ri cases from 0 to 26.65, coupled with cross− or single−sided ventilation, were considered. Model validation showed that the numerical model coupled with the RNG k-ε model was able to better predict the indoor buoyant flow and pollutant dispersion. The results showed that the similarity criterion of Ri equality should be first satisfied in order to study indoor mixed convection using the reduced−scale model, followed by Re−independence. For cross−ventilation, when Ri < 5.31, the incoming flow inertia force mainly dominates the indoor flow structure so that the ACH, indoor temperature, and pollutant distributions remain almost constant. When Ri > 5.31, the thermal buoyancy force becomes increasingly important, causing significant changes in indoor flow structures. However, for single−sided ventilation, when Ri > 5.31 and continues to increase, the buoyancy force mainly dominates the indoor flow structure, causing a significant increase in ACH, thus reducing the indoor average temperature and pollutant accumulation.

Funder

National Natural Science Foundation of China

Scientific and Innovative Action Plan of Shanghai

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference43 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3