Estimation and Analysis of PM2.5 Concentrations with NPP-VIIRS Nighttime Light Images: A Case Study in the Chang-Zhu-Tan Urban Agglomeration of China

Author:

Wang Mengjie,Wang YanjunORCID,Teng Fei,Li ShaochunORCID,Lin Yunhao,Cai Hengfan

Abstract

Rapid economic and social development has caused serious atmospheric environmental problems. The temporal and spatial distribution characteristics of PM2.5 concentrations have become an important research topic for sustainable social development monitoring. Based on NPP-VIIRS nighttime light images, meteorological data, and SRTM DEM data, this article builds a PM2.5 concentration estimation model for the Chang-Zhu-Tan urban agglomeration. First, the partial least squares method is used to calculate the nighttime light radiance, meteorological elements (temperature, relative humidity, and wind speed), and topographic elements (elevation, slope, and topographic undulation) for correlation analysis. Second, we construct seasonal and annual PM2.5 concentration estimation models, including multiple linear regression, support random forest, vector regression, Gaussian process regression, etc., with different factor sets. Finally, the accuracy of the PM2.5 concentration estimation model that results in the Chang-Zhu-Tan urban agglomeration is analyzed, and the spatial distribution of the PM2.5 concentration is inverted. The results show that the PM2.5 concentration correlation of meteorological elements is the strongest, and the topographic elements are the weakest. In terms of seasonal estimation, the spring estimation results of multiple linear regression and machine learning estimation models are the worst, the winter estimation results of multiple linear regression estimation models are the best, and the annual estimation results of machine learning estimation models are the best. At the same time, the study found that there is a significant difference in the temporal and spatial distribution of PM2.5 concentrations. The methods in this article overcome the high cost and spatial resolution limitations of traditional large-scale PM2.5 concentration monitoring, to a certain extent, and can provide a reference for the study of PM2.5 concentration estimation and prediction based on satellite remote sensing technology.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3