Rapid Estimation of Earthquake Fatalities in Mainland China Based on Physical Simulation and Empirical Statistics—A Case Study of the 2021 Yangbi Earthquake

Author:

Li YilongORCID,Zhang ZhenguoORCID,Wang Wenqiang,Feng Xuping

Abstract

At present, earthquakes cannot be predicted. Scientific decision-making and rescue after an earthquake are the main means of mitigating the immediate consequences of earthquake disasters. If emergency response level and earthquake-related fatalities can be estimated rapidly and quantitatively, this estimation will provide timely, scientific guidance to government organizations and relevant institutions to make decisions on earthquake relief and resource allocation, thereby reducing potential losses. To achieve this goal, a rapid earthquake fatality estimation method for Mainland China is proposed herein, based on a combination of physical simulations and empirical statistics. The numerical approach was based on the three-dimensional (3-D) curved grid finite difference method (CG-FDM), implemented for graphics processing unit (GPU) architecture, to rapidly simulate the entire physical propagation of the seismic wavefield from the source to the surface for a large-scale natural earthquake over a 3-D undulating terrain. Simulated seismic intensity data were used as an input for the fatality estimation model to estimate the fatality and emergency response level. The estimation model was developed by regression analysis of the data on human loss, intensity distribution, and population exposure from the Mainland China Composite Damaging Earthquake Catalog (MCCDE-CAT). We used the 2021 Ms 6.4 Yangbi earthquake as a study case to provide estimated results within 1 h after the earthquake. The number of fatalities estimated by the model was in the range of 0–10 (five expected fatalities). Therefore, Level IV earthquake emergency response plan should have been activated (the government actually overestimated the damage and activated a Level II emergency response plan). The local government finally reported three deaths during this earthquake, which is consistent with the model predictions. We also conducted a case study on a 2013 Ms7.0 earthquake in the discussion, which further proved the effectiveness of the method. The proposed method will play an important role in post-earthquake emergency response and disaster assessment in Mainland China. It can assist decision-makers to undertake scientifically-based actions to mitigate the consequences of earthquakes and could be used as a reference approach for any country or region.

Funder

National Natural Science Foundation of China

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Futuristic Disaster Mitigation;Advances in Computational Intelligence and Robotics;2024-05-31

2. A Physics-Based Seismic Risk Assessment of the Qujiang Fault: From Dynamic Rupture to Disaster Estimation;International Journal of Disaster Risk Science;2024-02

3. Reevaluating Earthquake Fatalities in the Taiwan Region: Toward More Accurate Assessments;Seismological Research Letters;2024-01-12

4. Estimating the economic loss caused by earthquake in Mainland China;International Journal of Disaster Risk Reduction;2023-09

5. Rapid estimation of disaster losses for the M6.8 Luding earthquake on September 5, 2022;Science China Earth Sciences;2023-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3