Effects of Land Reclamation on Soil Bacterial Community and Potential Functions in Bauxite Mining Area

Author:

Li Xuesong,Jin Zhenjiang,Xiong Liyuan,Tong Lingchen,Zhu Hongying,Zhang Xiaowen,Qin Guangfa

Abstract

Studying the characteristics of microorganisms in mine reclamation sites can provide a scientific reference basis for mine land reclamation. Soils in the plough layer (0–20 cm) of the bauxite mine plots in Pingguo city, Guangxi Zhuang Autonomous Region, China, with different reclamation years were used as the research objects. The community structure of soil bacteria was analyzed with high-throughput sequencing technology. The results show the following: (1) Reclamation significantly increased the contents of soil nutrients (p < 0.05). (2) The relative abundances of Proteobacteria were high (22.90~41.56%) in all plots, and reclamation significantly reduced the relative abundances of Firmicutes (3.42–10.77%) compared to that in the control plot (24.74%) (p < 0.05). The relative abundances of α-proteobacteria generally increased while the reclamation year increased. The relative abundances of α-proteobacteria and γ-proteobacteria showed significant positive correlations with soil carbon, nitrogen, and phosphorus nutrients (p < 0.01). The relative abundance of Acidobacteria Group 6 showed significant positive correlations with soil exchangeable Ca and Mg (p < 0.01). (3) Bacterial co-occurrence network showed more Copresence interactions in all plots (50.81–58.39%). The reclaimed plots had more nodes, higher modularity, and longer characteristic path length than the control plot, and the keystone taxa changed in different plots. (4) The chemoheterotrophy and aerobic chemoheterotrophy were the most abundant functional groups in all plots (35.66–48.26%), while reclamation reduced the relative abundance of fermentation groups (1.75–11.21%). The above findings indicated that reclamation improved soil nutrients, changed the bacterial community structure and potential functions, and accelerated the microbial stabilization of the reclaimed soil.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Guangxi China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3