Attempting to Increase the Effectiveness of the Antidepressant Trazodone Hydrochloride Drug Using π-Acceptors

Author:

Alsanie Walaa F.,Alhomrani MajidORCID,Alamri Abdulhakeem S.ORCID,Alyami HussainORCID,Shakya SonamORCID,Habeeballah HamzaORCID,Alkhatabi Heba A.,Felimban Raed I.ORCID,Alamri Abdulwahab,Alhabeeb Abdulhameed Abdullah,Raafat Bassem M.,Refat Moamen S.ORCID,Gaber AhmedORCID

Abstract

Major depressive disorder is a prevalent mood illness that is mildly heritable. Cases with the highest familial risk had recurrence and onset at a young age. Trazodone hydrochloride is an antidepressant medicine that affects the chemical messengers in the brain known as neurotransmitters, which include acetylcholine, norepinephrine, dopamine, and serotonin. In the present research, in solid and liquid phases, the 1:1 charge-transfer complexes between trazodone hydrochloride (TZD) and six different π-acceptors were synthesized and investigated using different microscopic techniques. The relation of dative ion pairs [TZD+, A−], where A is the acceptor, was inferred via intermolecular charge-transfer complexes. Additionally, a molecular docking examination was utilized to compare the interactions of protein receptors (serotonin-6BQH) with the TZD alone or in combination with the six distinct acceptor charge-transfer complexes. To refine the docking results acquired from AutoDock Vina and to better examine the molecular mechanisms of receptor-ligand interactions, a 100 ns run of molecular dynamics simulation was used. All the results obtained in this study prove that the 2,6-dichloroquinone-4-chloroimide (DCQ)/TZD complex interacts with serotonin receptors more efficiently than reactant donor TZD only and that [(TZD)(DCQ)]-serotonin has the highest binding energy value of all π-acceptor complexes.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3