A Kinetic Model for Anaerobic Digestion and Biogas Production of Plant Biomass under High Salinity

Author:

Wang Jing,Liu Bing,Sun MengORCID,Chen Feiyong,Terashima MitsuharuORCID,Yasui Hidenari

Abstract

The aim of this study is to evaluate the anaerobic digestion and biogas production of plant biomass under high salinity by adopting a theoretical and technical approach for saline plant-biomass treatment. Two completely mixed lab-scale mesophilic reactors were operated for 480 days. In one of them, NaCl was added and the sodium ion concentration was maintained at 35.8 g-Na+·L−1, and the organic loading rate was 0.58-COD·L−1·d−1–1.5 g-COD·L−1·d−1; the other added Na2SO4–NaHCO3 and kept the sodium ion concentration at 27.6 g-Na+·L−1 and the organic loading rate at 0.2 g-COD·L−1·d−1–0.8 g-COD·L−1·d−1. The conversion efficiencies of the two systems (COD to methane) were 66% and 54%, respectively. Based on the sulfate-reduction reaction and the existing anaerobic digestion model, a kinetic model comprising 12 types of soluble substrates and 16 types of anaerobic microorganisms was developed. The model was used to simulate the process performance of a continuous anaerobic bioreactor with a mixed liquor suspended solids (MLSS) concentration of 10 g·L−1–40 g·L−1. The results showed that the NaCl system could receive the influent up to a loading rate of 0.16 kg-COD/kg-MLSS·d−1 without significant degradation of the methane conversion at 66%, while the Na2SO4–NaHCO3 system could receive more than 2 kg-COD·kg−1-MLSS·d−1, where 54% of the fed chemical oxygen demand (COD) was converted into methane and another 12% was observed to be sulfide.

Funder

National science foundation of Shandong Province

National key research and development program

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3