Construction of Landscape Ecological Security Pattern in the Zhundong Region, Xinjiang, NW China

Author:

Jiang JiaoORCID,Abulizi Abudukeyimu,Abliz Abdugheni,Zayiti Abudoukeremujiang,Akbar Adila,Ou Bin

Abstract

The Xinjiang Zhundong Economic and Technological Development Zone, which contains the largest coalfield in China, is a mega energy base for west–east gas transmission and outbound electricity transmission in China; however, resource exploitation and the region’s arid climate have led to the region’s ecological environment being increasingly vulnerable. The morphological spatial pattern analysis (MSPA) method and landscape connectivity were used in this study to identify the ecological sources and extract the ecological corridors and ecological nodes based on the minimum cumulative resistance (MCR) model, used to construct the landscape ecological security pattern in the Zhundong region from 2016 to 2021. The results show that (a) from 2016 to 2021, the area of ecological sources increased by 117.86 ha and the distribution density of which decreased from the southern-central region to the northern and northwestern regions. (b) From 2016 to 2021, the number of ecological corridors and ecological nodes decreased, and the ecological corridors with dense distributions in the south gradually moved to the north and west. The length of the ecological corridors in the south gradually became longer, and the number of ecological corridors connecting the east and west in the north increased. (c) The landscape ecological security pattern of the Zhundong region was constructed by “a network and multiple points” using the model of ecological sources–ecological corridors–ecological nodes. The findings of this study provide a scientific foundation for the construction of an ecological security development plan and the ecologically protective development of coal resources in Zhundong.

Funder

The coal resources of Protective exploitation and environmental effects in Xinjiang

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3