Bio-Enhanced Degradation Strategies for Fluoroquinolones in the Sewage Sludge Composting Stage: Molecular Modification and Resistance Gene Regulation

Author:

Jin Xingyan,Zhao Yuanyuan,Ren Zhixing,Wang Panpan,Li YuORCID

Abstract

The molecular/protein–protein docking and the index normalization method assisted by the entropy weight method were used to quantitatively evaluate the biodegradability of fluoroquinolones (FQs) under different biodegradation systems. Four biodegradability three-dimensional quantitative structure–activity relationship (3D-QSAR) models of FQs were constructed to design FQ derivatives with improved biodegradability. Through the evaluation of the environmental friendliness and functional properties, the FQ derivatives with high biodegradability, improved functionality, and environmental friendliness were screened. Moreover, four bio-enhanced degradation scenarios of FQs were set up according to the different temperatures and carbon–nitrogen ratio (C/N) in the sewage sludge composting stage, and the molecular dynamic (MD) simulation assisted by protein–protein docking was used to screen the external environmental factors that promote the degradation of FQs by thermophilic bacteria or group under different scenarios. Finally, MD simulation assisted by sampling method was used to validate and screen the application scheme of field measures to enhance the expression of antibacterial resistance of FQ derivatives in an agricultural soil environment after activated sludge land use. This study aims to provide theoretical support for the development of highly biodegradable FQ derivatives and the mitigation of potential risks that FQs may pose to the environment and humans through the food chain.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3