Brown Dog Tick (Rhipicephalus sanguineus Sensu Lato) Infection with Endosymbiont and Human Pathogenic Rickettsia spp., in Northeastern México

Author:

Salomon JordanORCID,Fernandez Santos Nadia Angelica,Zecca Italo B.ORCID,Estrada-Franco Jose G.ORCID,Davila Edward,Hamer Gabriel L.ORCID,Rodriguez Perez Mario AlbertoORCID,Hamer Sarah A.ORCID

Abstract

Of the documented tick-borne diseases infecting humans in México, Rocky Mountain spotted fever (RMSF), caused by the Gram-negative bacterium Rickettsia rickettsii, is responsible for most fatalities. Given recent evidence of brown dog tick, Rhipicephalus sanguineus s.l., as an emerging vector of human RMSF, we aimed to evaluate dogs and their ticks for rickettsiae infections as an initial step in assessing the establishment of this pathosystem in a poorly studied region of northeastern México while evaluating the use of dogs as sentinels for transmission/human disease risk. We sampled owned dogs living in six disadvantaged neighborhoods of Reynosa, northeastern México to collect whole blood and ticks. Of 168 dogs assessed, tick infestation prevalence was 53%, composed of exclusively Rh. sanguineus s. l. (n = 2170 ticks). Using PCR and sequencing, we identified an overall rickettsiae infection prevalence of 4.1% (n = 12/292) in ticks, in which eight dogs harbored at least one infected tick. Rickettsiae infections included Rickettsia amblyommatis and Rickettsia parkeri, both of which are emerging human pathogens, as well as Candidatus Rickettsia andeanae. This is the first documentation of pathogenic Rickettsia species in Rh. sanguineus s.l. collected from dogs from northeastern México. Domestic dog infestation with Rickettsia-infected ticks indicates ongoing transmission; thus, humans are at risk for exposure, and this underscores the importance of public and veterinary health surveillance for these pathogens.

Funder

Consejo Nacional de Ciencia y Tecnología

Lawrence Livermore National Laboratory

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3