SkinSensPred as a Promising in Silico Tool for Integrated Testing Strategy on Skin Sensitization

Author:

Wang Shan-ShanORCID,Wang Chia-ChiORCID,Tung Chun-WeiORCID

Abstract

Skin sensitization is an important regulatory endpoint associated with allergic contact dermatitis. Recently, several adverse outcome pathway (AOP)-based alternative methods were developed to replace animal testing for evaluating skin sensitizers. The AOP-based assays were further integrated as a two-out-of-three method with good predictivity. However, the acquisition of experimental data is resource-intensive. In contrast, an integrated testing strategy (ITS) capable of maximizing the usage of laboratory data from AOP-based and in silico methods was developed as defined approaches (DAs) to both hazard and potency assessment. There are currently two in silico models, namely Derek Nexus and OECD QSAR Toolbox, evaluated in the OECD Testing Guideline No. 497. Since more advanced machine learning algorithms have been proposed for skin sensitization prediction, it is therefore desirable to evaluate their performance under the ITS framework. This study evaluated the performance of a new ITS DA (ITS-SkinSensPred) adopting a transfer learning-based SkinSensPred model. Results showed that the ITS-SkinSensPred has similar or slightly better performance compared to the other ITS models. SkinSensPred-based ITS is expected to be a promising method for assessing skin sensitization.

Funder

Taiwan Agricultural Chemicals and Toxic Substances Research Institute

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference25 articles.

1. International regulatory requirements for skin sensitization testing

2. Test No. 406: Skin Sensitisation: OECD Guidelines for the Testing of Chemicals,2021

3. Test No. 429: Skin Sensitisation: Local Lymph Node Assay,2010

4. Test No. 442C: In Chemico Skin Sensitisation Assays Addressing the Adverse Outcome Pathway Key Event on Covalent Binding to Proteins,2021

5. Test No. 442D: In Vitro Skin Sensitisation ARE-Nrf2 Luciferase Test Method,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3