Analysis of Ventilation Efficiency as Simultaneous Control of Radon and Carbon Dioxide Levels in Indoor Air Applying Transient Modelling

Author:

Dovjak MatejaORCID,Vene Ožbej,Vaupotič Janja

Abstract

The impact of ventilation efficiency on radon (222Rn) and carbon dioxide (CO2) concentrations in the indoor air of a residential building was studied by applying transient data analysis within the CONTAM 3.4 program. Continuous measurements of 222Rn and CO2 concentrations, together with basic meteorological parameters, were carried out in an apartment (floor area about 27 m2) located in Ljubljana, Slovenia. Throughout the experiment (October 3–15), frequent ventilation (several times per day), poor ventilation (once to twice per day) and no ventilation scenarios were applied, and the exact ventilation and occupancy schedule were recorded. Based on the measurements, a transient simulation of 222Rn and CO2 concentrations was performed for six sets of scenarios, where the design ventilation rate (DVR) varied based on the ventilation requirements and recommendations. On the days of frequent ventilation, a moderate correlation between the measured and simulated concentrations (r = 0.62 for 222Rn, r = 0.55 for CO2) was found. The results of the simulation indicated the following optimal DVRs: (i) 36.6 m3 h−1 (0.5 air changes per hour, ACH) to ensure a CO2 concentration below 1000 ppm and a 222Rn concentration below 100 Bq m−3; and (ii) 46.9 m3 h−1 (0.7 ACH) to ensure a CO2 concentration below 800 ppm. These levels are the most compatible with the 5C_Cat I (category I of indoor environmental quality, defined by EN 16798-1:2019) scenario, which resulted in concentrations of 656 ± 121 ppm for CO2 and 57 ± 13 Bq m−3 for 222Rn. The approach presented is applicable to various types of residential buildings with high overcrowding rates, where a sufficient amount of air volume to achieve category I indoor environmental quality has to be provided. Lower CO2 and 222Rn concentrations indoors minimise health risk, which is especially important for protecting sensitive and fragile occupants.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference70 articles.

1. Public health: Seattle and King County’s push for the built environment;Roof;J. Environ. Health,2008

2. Creating Healthy and Sustainable Buildings: An Assessment of Health Risk Factors;Dovjak,2019

3. An Estimated 12.6 Million Deaths Each Year Are Attributable to Unhealthy Environmentshttps://www.who.int/news/item/15-03-2016-an-estimated-12-6-million-deaths-each-year-are-attributable-to-unhealthy-environments

4. Health & Consumer Protection Directorate-General, Opinion on Risk Assessment on Indoor Air Qualityhttp://ec.europa.eu/health/ph_risk/committees/04_scher/docs/scher_o_055.pdf

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3