SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis

Author:

Sipari DarioORCID,Chaparro-Rico Betsy D. M.ORCID,Cafolla DanieleORCID

Abstract

The gait cycle of humans may be influenced by a range of variables, including neurological, orthopedic, and pathological conditions. Thus, gait analysis has a broad variety of applications, including the diagnosis of neurological disorders, the study of disease development, the assessment of the efficacy of a treatment, postural correction, and the evaluation and enhancement of sport performances. While the introduction of new technologies has resulted in substantial advancements, these systems continue to struggle to achieve a right balance between cost, analytical accuracy, speed, and convenience. The target is to provide low-cost support to those with motor impairments in order to improve their quality of life. The article provides a novel automated approach for motion characterization that makes use of artificial intelligence to perform real-time analysis, complete automation, and non-invasive, markerless analysis. This automated procedure enables rapid diagnosis and prevents human mistakes. The gait metrics obtained by the two motion tracking systems were compared to show the effectiveness of the proposed methodology.

Funder

Ministero della Salute

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference44 articles.

1. Intelligenza Artificiale. Scienza & Vita Nuova;Somalvico,1987

2. AIFH, Volume 3: Deep Learning and Neural Networks;Heaton,2015

3. Using Machine Learning to Examine Medication Adherence Thresholds and Risk of Hospitalization

4. Accurate and dynamic predictive model for better prediction in medicine and healthcare

5. Intelligenza Artificiale e Big Data in ambito medico: Prospettive, opportunità, criticità;Musacchio;J. AMD,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3