Use of Artificial Intelligence to Manage Patient Flow in Emergency Department during the COVID-19 Pandemic: A Prospective, Single-Center Study

Author:

Arnaud EmilienORCID,Elbattah Mahmoud,Ammirati Christine,Dequen GillesORCID,Ghazali Daniel AihamORCID

Abstract

Background: During the coronavirus disease 2019 (COVID-19) pandemic, calculation of the number of emergency department (ED) beds required for patients with vs. without suspected COVID-19 represented a real public health problem. In France, Amiens Picardy University Hospital (APUH) developed an Artificial Intelligence (AI) project called “Prediction of the Patient Pathway in the Emergency Department” (3P-U) to predict patient outcomes. Materials: Using the 3P-U model, we performed a prospective, single-center study of patients attending APUH’s ED in 2020 and 2021. The objective was to determine the minimum and maximum numbers of beds required in real-time, according to the 3P-U model. Results A total of 105,457 patients were included. The area under the receiver operating characteristic curve (AUROC) for the 3P-U was 0.82 for all of the patients and 0.90 for the unambiguous cases. Specifically, 38,353 (36.4%) patients were flagged as “likely to be discharged”, 18,815 (17.8%) were flagged as “likely to be admitted”, and 48,297 (45.8%) patients could not be flagged. Based on the predicted minimum number of beds (for unambiguous cases only) and the maximum number of beds (all patients), the hospital management coordinated the conversion of wards into dedicated COVID-19 units. Discussion and conclusions: The 3P-U model’s AUROC is in the middle of range reported in the literature for similar classifiers. By considering the range of required bed numbers, the waste of resources (e.g., time and beds) could be reduced. The study concludes that the application of AI could help considerably improve the management of hospital resources during global pandemics, such as COVID-19.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3