Conceptual Design of the “Private Car” Self-Isolation Ecosystem for the 2019-nCoV Infection

Author:

Wang Yudong,Wang Lanting,Wu Xinggui,Ding Ziyi,Zheng Wanbo,Liang Xingxing,An HuamingORCID

Abstract

Since the beginning of the COVID-19 outbreak, confirmed and suspected cases of the disease have been increasing rapidly. The isolation of cases is one of the most effective methods for the control and containment of COVID-19 and has been rapidly popularized. Problems with isolation have gradually emerged, such as the inadequate allocation of isolation resources and the failure to properly resettle many of the suspected cases of the 2019-nCoV infection. In this paper, a self-isolation ecosystem of a rapid-deploying negative-pressurized “private car” is proposed for housing patients with 2019-nCoV infection, which could be lightweight, moderately sized and transparent to enable group supervision and communication. This “private car” isolation method aims to achieve self-isolation of patients and essentially solves the problem of where and how to isolate suspected cases while saving isolation resources and preventing the large-scale transmission of COVID-19.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3