A Model to Evaluate the Effectiveness of the Maritime Shipping Risk Mitigation System by Entropy-Based Capability Degradation Analysis

Author:

Shen JunORCID,Ma Xiaoxue,Qiao WeiliangORCID

Abstract

Accurate evaluation of the risk mitigation status of navigating ships is essential for guaranteeing navigational safety. This research mainly focuses on the feasibility and accuracy of evaluating the real effectiveness of a risk mitigation system for navigating ships, including addressing the problem of immeasurableness for risk mitigation capability and determining the degradation regulation of risk mitigation capability over time. The proposed method to solve the problem is an effectiveness evaluation model based on the capability perspective, composed of a capability measurement algorithm based on entropy theory and capability degradation regulation analysis based on numerical process fitting. First, combined with the theoretical framework of a comprehensive defence system, the risk mitigation system designed for navigating ships is reconstructed based on capability building. Second, using a numerical fitting method, the degradation regulation of risk mitigation capability with time is obtained to improve the accuracy of the dynamic evaluation. Finally, referring to entropy theory, the uncertainty of capability is calculated, and then the model is constructed based on this uncertainty to realize the effectiveness evaluation from a capability perspective. The results obtained in an application test of the proposed model indicate that using the entropy of capability can realize an accurate effectiveness evaluation of a risk mitigation system for navigating ships, with a 9% improvement in accuracy, and the Weibull curve fitting is more consistent with capability degradation regulation, with a signification level of 2.5%. The proposed model provides a new path for evaluating the effectiveness of a risk mitigation system for navigating ships from the entropy of capability, and compared with the traditional probabilistic method, the model is more realistic and accurate in actual applications.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3