Spatial–Temporal Correlations between Soil pH and NPP of Grassland Ecosystems in the Yellow River Source Area, China

Author:

Zhang XiaoningORCID,Nian Lili,Liu Xingyu,Li Xiaodan,Adingo SamuelORCID,Liu Xuelu,Wang Quanxi,Yang Yingbo,Zhang Miaomiao,Hui Caihong,Yu Wenting,Zhang Xinyu,Ma Wenjun,Zhang Yaoquan

Abstract

In recent years, ecological concerns such as vegetation destruction, permafrost deterioration, and river drying have been paid much more attention to on the Yellow River Basin in China. Soil pH is regarded to be the fundamental variable among soil properties for vegetation growth, while net primary productivity (NPP) is also an essential indicator to reflect the healthy growth of vegetation. Due to the limitation of on-site samples, the spatial–temporal variations in soil pH and NPP, as well as their intrinsic mechanisms, remain unknown, especially in the Yellow River source area, China. Therefore, it is imperative to investigate the coupling relationship between soil pH and NPP of the area. The study coupled MODIS reflectance data (MOD09A1) with on-site soil pH to estimate spatial–temporal variations in soil pH, explore the response of NPP to soil pH, and assess the extent to which they contribute to grassland ecosystems, thus helping to fill knowledge gaps. Results indicated that the surface spectral reflectance for seven bands could express the geographic pattern of soil pH by applying a multiple linear regression equation; NPP exhibited an increasing trend while soil pH was the contrary in summer from 2000 to 2021. In summer, NPP was negatively correlated with soil pH and there was a lag effect in the response of NPP to soil pH, revealing a correlation between temperate steppes > montane meadows > alpine meadows > swamps in different grassland ecosystems. In addition, contribution indices for temperate steppes and montane meadows were positive whereas they were negative for swamps and alpine meadows, which are apparent findings. The contribution index of montane and alpine meadows was greater than that of temperate steppes and swamps. The approach of the study can enable managers to easily identify and rehabilitate alkaline soil and provides an important reference and practical value for ecological restoration and sustainable development of grassland ecosystems in alpine regions.

Funder

Xuelu Liu

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3