Multi-Scenario Simulation to Predict Ecological Risk Posed by Urban Sprawl with Spontaneous Growth: A Case Study of Quanzhou

Author:

Liao Jiangfu,Tang LinaORCID,Shao Guofan

Abstract

The rapid expansion of different types of urban land continues to erode natural and semi-natural ecological space and causes irreversible ecological damage to rapidly industrialized and urbanized areas. This work considers Quanzhou, a typical industrial and trade city in southeastern China as the research area and uses a Markov chain integrated into the patch-generating land use simulation (PLUS) model to simulate the urban expansion of Quanzhou from 2005 to 2018. The PLUS model uses the random forest algorithm to determine the contribution of driving factors and simulate the organic and spontaneous growth process based on the seed generation mechanism of multi-class random patches. Next, leveraging the importance of ecosystem services and ecological sensitivity as indicators of evaluation endpoints, we explore the temporal and spatial evolution of ecological risks from 2018 to 2031 under the scenarios of business as usual (BAU), industrial priority, and urban transformation scenarios. The evaluation endpoints cover water conservation service, soil conservation service, biodiversity maintenance service, soil erosion sensitivity, riverside sensitivity, and soil fertility. The ecological risk studied in this work involves the way in which different types of construction land expansion can possibly affect the ecosystem. The ecological risk index is divided into five levels. The results show that during the calibration simulation period from 2005 to 2018 the overall accuracy and Kappa coefficient reached 91.77% and 0.878, respectively. When the percent-of-seeds (PoS) parameter of random patch seeds equals 0.0001, the figure of merit of the simulated urban construction land improves by 3.9% compared with the logistic-based cellular automata model (Logistic-CA) considering organic growth. When PoS = 0.02, the figure of merit of the simulated industrial and mining land is 6.5% higher than that of the Logistic-CA model. The spatial reconstruction of multiple types of construction land under different urban development goals shows significant spatial differentiation on the district and county scale. In the industrial-priority scenario, the area of industrial and mining land is increased by 20% compared with the BAU scenario, but the high-level risk area is 42.5% larger than in the BAU scenario. Comparing the spatial distribution of risks under the BAU scenario, the urban transition scenario is mainly manifested as the expansion of medium-level risk areas around Quanzhou Bay and the southern region. In the future, the study area should appropriately reduce the agglomeration scale of urban development and increase the policy efforts to guide the development of industrial land to the southeast.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3