Epilepsy Seizures Prediction Based on Nonlinear Features of EEG Signal and Gradient Boosting Decision Tree

Author:

Xu Xin,Lin Maokun,Xu Tingting

Abstract

Epilepsy is a common neurological disorder with sudden and recurrent seizures. Early prediction of seizures and effective intervention can significantly reduce the harm suffered by patients. In this paper, a method based on nonlinear features of EEG signal and gradient boosting decision tree (GBDT) is proposed for early prediction of epilepsy seizures. First, the EEG signals were divided into two categories: those that had seizures onset over a period of time (represented by InT) and those that did not. Second, the noise in the EEG was removed using complementary ensemble empirical mode decomposition (CEEMD) and wavelet threshold denoising. Third, the nonlinear features of the two categories of EEG were extracted, including approximate entropy, sample entropy, permutation entropy, spectral entropy and wavelet entropy. Fourth, a GBDT classifier with random forest as the initial result was designed to distinguish the two categories of EEG. Fifth, a two-step “k of n” method was used to reduce the number of false alarms. The proposed method was evaluated on 13 patients’ EEG data from the CHB-MIT Scalp EEG Database. Based on ten-fold cross validation, the average accuracy was 91.76% when the InT was taken at 30 min, and 38 out of 39 seizures were successfully predicted. When the InT was taken for 40 min, the average accuracy was 92.50% and all 42 seizures selected were successfully predicted. The results indicate the effectiveness of the proposed method for predicting epilepsy seizures.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference20 articles.

1. Comprehensive Analysis of EEG Datasets for Epileptic Seizure Prediction;Rahman;Proceedings of the IEEE International Symposium on Circuits and Systems (IEEE ISCAS),2021

2. An Overview of EEG-based Machine Learning Methods in Seizure Prediction and Opportunities for Neurologists in this Field

3. Research progress of epileptic seizure predictions based on electroencephalogram signals;Han;Sheng Wu Yi Xue Gong Cheng Xue Za Zhi = Chin. J. Biomed. Eng.,2021

4. Epileptic Seizure Prediction from Scalp EEG Using Ratios of Spectral Power;Salvatierra;Proceedings of the 2020 IEEE Engineering International Research Conference (EIRCON),2020

5. Epilepsy Seizure Prediction on EEG Using Common Spatial Pattern and Convolutional Neural Network

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3