Stress-Tolerant Endophytic Isolate Priestia aryabhattai BPR-9 Modulates Physio-Biochemical Mechanisms in Wheat (Triticum aestivum L.) for Enhanced Salt Tolerance

Author:

Shahid MohammadORCID,Zeyad Mohammad TariqueORCID,Syed Asad,Singh Udai B.ORCID,Mohamed Abdullah,Bahkali Ali H.,Elgorban Abdallah M.ORCID,Pichtel JohnORCID

Abstract

In efforts to improve plant productivity and enhance defense mechanisms against biotic and abiotic stresses, endophytic bacteria have been used as an alternative to chemical fertilizers and pesticides. In the current study, 25 endophytic microbes recovered from plant organs of Triticum aestivum L. (wheat) were assessed for biotic (phyto-fungal pathogens) and abiotic (salinity, drought, and heavy metal) stress tolerance. Among the recovered isolates, BPR-9 tolerated maximum salinity (18% NaCl), drought (15% PEG-6000), and heavy metals (µg mL−1): Cd (1200), Cr (1000), Cu (1000), Pb (800), and Hg (30). Based on phenotypic and biochemical characteristics, as well as 16S rDNA gene sequencing, endophytic isolate BPR-9 was recognized as Priestia aryabhattai (accession no. OM743254.1). This isolate was revealed as a powerful multi-stress-tolerant crop growth promoter after extensive in-vitro testing for plant growth-promoting attributes, nutrient (phosphate, P; potassium, K; and zinc, Zn) solubilization efficiency, extracellular enzyme (protease, cellulase, amylase, lipase, and pectinase) synthesis, and potential for antagonistic activity against important fungal pathogens viz. Alternaria solani, Rhizoctonia solani, Fusarium oxysporum, and Ustilaginoidea virens. At elevated salt levels, increases were noted in indole-3-acetic acid; siderophores; P, K, and Zn-solubilization; ACC deaminase; and ammonia synthesized by Priestia aryabhattai. Additionally, under in-vitro plant bioassays, wheat seedlings inoculated with P. aryabhattai experienced superior growth compared to non-inoculated seedlings in high salinity (0–15% NaCl) environment. Under NaCl stress, germination rate, plant length, vigor indices, and leaf pigments of wheat seedlings significantly increased following P. aryabhattai inoculation. Furthermore, at 2%-NaCl, B. aryabhattai greatly and significantly (p ≤ 0.05) decreased relative leaf water content, membrane damage, and electrolyte leakage compared with the non-inoculated control. Catalase, superoxide dismutase, and peroxidase activity increased by 29, 32, and 21%, respectively, in wheat seedlings exposed to 2% NaCl and inoculated with the bacteria. The present findings demonstrate that endophytic P. aryabhattai strains might be used in the future as a multi-stress reducer and crop growth promoter in agronomically important crops including cereals.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference101 articles.

1. Endophytes: Emerging Tools for the Bioremediation of Pollutants;Sim,2019

2. Endophytic Actinomycetes-Mediated Modulation of Defense and Systemic Resistance Confers Host Plant Fitness Under Biotic Stress Conditions;Ansari,2020

3. Biotechnological application of plant growth-promoting endophytic bacteria isolated from halophytic plants to ameliorate salinity tolerance of Vicia faba L.

4. Endophyte-produced antimicrobials: a review of potential lead compounds with a focus on quorum-sensing disruptors

5. Endophytes as Plant Nutrient Uptake-Promoter in Plants;García-Latorre,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3