Evaluating the Effect of Nano-SiO2 on Different Types of Soils: A Multi-Scale Study

Author:

Gu JiayuORCID,Cai Xin,Wang Youqiang,Guo Dahan,Zeng Wen

Abstract

A rapid growth in the population leads to a large increase in engineering construction. This means there is an inevitability in regard to building on problematic soils. Soil reinforcement becomes an important subject due to the fact that it is a concern for engineers and scientists. With the development of nanotechnology, more and more nanomaterials are being introduced within the practice of soil reinforcement engineering. In this study, the reinforcing effect of novel nanomaterial nano-silica (SiO2) applied to different kinds of soils was systematically studied. The nano-SiO2-reinforced soil possessed lower final water evaporation loss, and evaporation rates. The nano-SiO2 increased the shear strength of clayey soil and sandy soil under both cured and uncured conditions, but the reinforcing effect on clayey soil was more obvious. The addition of nano-SiO2 promotes the friction angle and cohesion of clayey soil; further, it also increases the cohesion of sandy soil. The unconfined compressive strength of clayey soil was enhanced by nano-SiO2, meanwhile, the nano-SiO2-reinforced soil possessed greater brittleness. The microstructure of nano-SiO2-reinforced soil is shown via SEM analysis, and the results of X-ray diffraction (XRD) tests show that there are no new mineral components generated during the reinforcing process. It was also found that nano-SiO2 possessed little influence on the soil pH value. Adding nano-SiO2 will not damage the original chemical environment of the soil. The microstructure of nano-SiO2-reinforced soil was observed to prove the results above. In general, nano-SiO2 is an excellent soil additive that can improve the mechanical properties of both clayey soil and sandy soil effectively. This research provides more ideas and directions for the purposes of selecting soil reinforcement materials.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3