Preparation of High-Porosity B-TiO2/C3N4 Composite Materials: Adsorption–Degradation Capacity and Photo-Regeneration Properties

Author:

Guo Xiang,Rao Lei,Shi Zhenyu

Abstract

Adsorption can quickly remove pollutants in water, while photocatalysis can effectively decompose organic matter. B-TiO2/g-C3N4 ternary composite photocatalytic materials were prepared by molten method, and their adsorption–degradation capability under visible light conditions was discussed. The morphology of the B-TiO2/g-C3N4 materials was inspected by SEM, TEM, BET, and EDS, and the results showed that close interfacial connections between TiO2 and g-C3N4, which are favorable for charge transfer between these two semiconductors, formed heterojunctions with suitable band structure which was contributed by the molten B2O3. Meanwhile, the molten B2O3 effectively increased the specific surface area of TiO2/C3N4 materials, thereby increasing the active sites and reducing the recombination of photogenerated electron–hole pairs and improving the photocatalytic degradation abilities of TiO2 and g-C3N4. Elsewhere, the crystal structure analysis (XRD, XPS, FTIR) results indicated that the polar -B=O bond formed a new structure with TiO2 and g-C3N4, which is not only beneficial for inhibiting the recombination of electron holes but also improving the photocatalytic activity. By removal experiment, the adsorption and degradation performances of B-TiO2/g-C3N4 composite material were found to be 8.5 times and 3.4 times higher than that of g-C3N4. Above all, this study prepared a material for removing water pollutants with high efficiency and provides theoretical support and experimental basis for the research on the synergistic removal of pollutants by adsorption and photocatalysis.

Funder

National Science Funds for Creative Research Groups of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3