Aerosolization Behaviour of Fungi and Its Potential Health Effects during the Composting of Animal Manure

Author:

Wang Ruonan,Yu Aoyuan,Qiu Tianlei,Guo Yajie,Gao Haoze,Sun Xingbin,Gao Min,Wang XumingORCID

Abstract

Compost is an important source of airborne fungi that can adversely affect occupational health. However, the aerosol behavior of fungi and their underlying factors in composting facilities are poorly understood. We collected samples from compost piles and the surrounding air during the composting of animal manure and analyzed the aerosolization behavior of fungi and its potential health effects based on the fungal composition and abundance in two media using high-throughput sequencing and ddPCR. There were differences in fungal diversity and richness between the air and composting piles. Ascomycota and Basidiomycota were the two primary fungal phyla in both media. The dominant fungal genera in composting piles were Aspergillus, Thermomyces, and Alternaria, while the dominant airborne fungal genes were Alternaria, Cladosporium, and Sporobolomyces. Although the communities of total fungal genera and pathogenic/allergenic genera were different in the two media, fungal abundance in composting piles was significantly correlated with abundance in air. According to the analysis on fungal composition, a total of 69.10% of the fungal genera and 91.30% of pathogenic/allergenic genera might escape from composting pile into the air. A total of 77 (26.64%) of the fungal genera and six (20%) of pathogenic/allergenic genera were likely to aerosolize. The influence of physicochemical parameters and heavy metals on the aerosol behavior of fungal genera, including pathogenic/allergenic genera, varied among the fungal genera. These results increase our understanding of fungal escape during composting and highlight the importance of aerosolization behavior for predicting the airborne fungal composition and corresponding human health risks in compost facilities.

Funder

National Natural Science Foundation of China

Research Foundation of BAAFS

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3