Utilization of Random Forest Classifier and Artificial Neural Network for Predicting Factors Influencing the Perceived Usability of COVID-19 Contact Tracing “MorChana” in Thailand

Author:

Ong Ardvin Kester S.ORCID,Prasetyo Yogi Tri,Yuduang Nattakit,Nadlifatin Reny,Persada Satria Fadil,Robas Kirstien Paola E.,Chuenyindee Thanatorn,Buaphiban Thapanat

Abstract

With the constant mutation of COVID-19 variants, the need to reduce the spread should be explored. MorChana is a mobile application utilized in Thailand to help mitigate the spread of the virus. This study aimed to explore factors affecting the actual use (AU) of the application through the use of machine learning algorithms (MLA) such as Random Forest Classifier (RFC) and Artificial Neural Network (ANN). An integrated Protection Motivation Theory (PMT) and the Unified Theory of Acceptance and Use of Technology (UTAUT) were considered. Using convenience sampling, a total of 907 valid responses from those who answered the online survey were voluntarily gathered. With 93.00% and 98.12% accuracy from RFC and ANN, it was seen that hedonic motivation and facilitating conditions were seen to be factors affecting very high AU; while habit and understanding led to high AU. It was seen that when people understand the impact and causes of the COVID-19 pandemic’s aftermath, its severity, and also see a way to reduce it, it would lead to the actual usage of a system. The findings of this study could be used by developers, the government, and stakeholders to capitalize on using the health-related applications with the intention of increasing actual usage. The framework and methodology used presented a way to evaluate health-related technologies. Moreover, the developing trends of using MLA for evaluating human behavior-related studies were further justified in this study. It is suggested that MLA could be utilized to assess factors affecting human behavior and technology used worldwide.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3