Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors

Author:

Buendia-Hernandez Francisco A.ORCID,Ortiz Bevia Maria J.,Alvarez-Garcia Francisco J.ORCID,Ruizde Elvira Antonio

Abstract

In this study, we introduce a sensitivity analysis of modelled CO2 aviation emissions to changes in the model parameters, which is intended as a contribution to the understanding of the atmospheric composition stabilization issue. The two variable dynamic model incorporates the effects of the technological innovations on the emissions rate, the environmental feedback, and a non-linear control term on the passengers rate. The model parameters, estimated from different air traffic sources, are subject to considerable uncertainty. The stability analysis of Monte Carlo simulations revealed that, for certain values of the non-linear term parameter and depending on the type of flight, the passengers number at some equilibrium points exceeded its initial value, while the emissions level was below the initial corresponding one. The results of two global sensitivity analyses indicated that the influence of the non-linear term prevailed on the passengers number rate, followed distantly by the environmental feedback. For the emissions rate, the non-linear term contribution dominated, with the technological term influence placing second.

Funder

The University of Alcala

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3