Responses of Coagulant Type, Dosage and Process Conditions to Phosphate Removal Efficiency from Anaerobic Sludge

Author:

Kim Dae Wook,Yu Sung Il,Im Kyuyong,Shin Juhee,Shin Seung GuORCID

Abstract

Phosphorus, a crucial component of life, may cause eutrophication if it is discharged untreated into the aquatic ecosystem. Phosphate (PO43-) may exist at an elevated level in anaerobic digestion (AD) effluents and can lead to the clogging of pipes by forming struvite crystals. This study was conducted to assess the responses of coagulant type, dosage and process conditions to phosphate removal efficiency from anaerobic sludge. The experiments were performed in two steps. First, a sensitivity test was conducted to compare five coagulant types (alum, poly-aluminum chloride (PAC), FeCl2, FeCl3 and PAC + FeCl3) at standard coagulation conditions. The results showed that PAC would be the best coagulant among the tested, while a combination of PAC and FeCl3 may be beneficial under circumstances. Second, an optimization study was performed for PAC using response surface methodology employing central composite design. Among the three independent variables (coagulant dosage, slow mixing duration and agitation speed), the dosage was the sole significant variable for phosphate removal efficiency, while the other two had limited effects. A future study to optimize the rapid mixing conditions would give additional insights into the process. The results of this study may be useful to design a process to counteract phosphate discharges from AD plants, as well as to reduce the risks of pipe clogging and maintenance problems due to crystalline struvite formation in the later stage of AD.

Funder

Gyeongsang National University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3