Uptake and Transport of Different Concentrations of PPCPs by Vegetables

Author:

Zeng Yongfu,Zhang Yiming,Zhang Haichao,Wang Jing,Lian KaoqiORCID,Ai Lianfeng

Abstract

In many parts of the world, water resources are scarce or even extremely scarce, and the reuse of water resources has become mainstream in today’s world. Many regions use treated wastewater for agricultural irrigation, aquaculture, and other activities. However, in recent years, wastewater has been found to contain large amounts of pharmaceuticals and personal care products (PPCPs). Therefore, there is a potential risk of PPCPs being transported in the environment and affecting human health. In this study, we compared the uptake, transport, and accumulation of 27 PPCPs in three types of sprouts (radish, buckwheat, and okra).The bioaccumulation of amantadine, diphenhydramine, chlorpheniramine maleate, sibutramine, hemosibutramine, chlorosibutramine, N-monomethyl sibutramine, N, N-desmethyl sibutramine, and carbamazepine was found to be significantly higher in plants grown for 12 days in media containing 0.5, 5.0, and 50.0 ng/mL PPCPs. With increasing concentration of PPCPs in the culture solution, the amount of PPCPs absorbed by plants and the degree of accumulation also showed an increasing trend. At the same time, it was demonstrated that there was an obvious uptake transfer phenomenon of PPCPs by plants, and the trend of uptake transfer became more and more obvious as the concentration of external environmental pollutants increased. In addition, amantadine, chlorpheniramine maleate, carbamazepine, N, N-desmethyl sibutramine, hemosibutramine, and chlorosibutramine showed more active translocation in some plants (TF > 1.0).

Funder

National Natural Science Foundation of China

Central Government guides the development of local science and technology project of Hebei Province

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3