Long-Term Examination of Water Chemistry Changes Following Treatment of Cyanobacterial Bloom with Coagulants and Minerals

Author:

Lee Bokjin,Kang Heejun,Oh Hye-cheol,Ahn Jaehwan,Park Saerom,Yun Sang-LeenORCID,Kim Seogku

Abstract

The abundant growth in cyanobacterial blooms poses severe ecological threats with a high risk to aquatic organisms and global public health. Control of cyanobacterial blooms involves spraying cyanobacteria removal materials, including coagulants. However, little is known about the fate of the coagulated-cyanobacteria-laden water. Here, we examined long-term changes in water quality following treatment with various coagulants and minerals for cyanobacterial removal when the coagulated cyanobacterial cells were not removed from the water. An experiment in a controlled water system tested the effects of six different compounds, one conventional coagulant, two natural inorganic coagulants, and three minerals. All tested coagulants and minerals exhibited >75% of cyanobacterial removal efficiency. However, compared to the control, higher concentrations of nitrogen were observed from some samples treated during the experimental period. After 20 months, the final total phosphorus concentration of the raw water increased 20-fold compared to the initial concentration to 11.82 mg/L, indicating significant nutrient release over time. Moreover, we observed that the decomposition of sedimented cyanobacterial cells caused the release of intracellular contents into the supernatant, increasing phosphorous concentration over time. Therefore, cyanobacterial cells should be removed from water after treatment to prevent eutrophication and maintain water quality.

Funder

National Research Council of Science and Technology

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3