Spatiotemporal Heterogeneity and the Key Influencing Factors of PM2.5 and PM10 in Heilongjiang, China from 2014 to 2018

Author:

Fu Longhui,Wang Qibang,Li Jianhui,Jin Huiran,Zhen ZhenORCID,Wei Qingbin

Abstract

Particulate matter (PM) degrades air quality and negatively impacts human health. The spatial–temporal heterogeneity of PM (PM2.5 and PM10) concentration in Heilongjiang Province during 2014–2018 and the key impacting factors were investigated based on principal component analysis-based ordinary least square regression (PCA-OLS), PCA-based geographically weighted regression (PCA-GWR), PCA-based temporally weighted regression (PCA-TWR), and PCA-based geographically and temporally weighted regression (PCA-GTWR). Results showed that six principal components represented the temperature, wind speed, air pressure, atmospheric pollution, humidity, and vegetation cover factor, respectively, contributing 87% of original variables. All the local models (PCA-GWR, PCA-TWR, and PCA-GTWR) were superior to the global model (PCA-OLS), and PCA-GTWR has the best performance. PM had greater temporal than spatial heterogeneity due to seasonal periodicity. Air pollutants (i.e., SO2, NO2, and CO) and pressure were promoted whereas temperature, wind speed, and vegetation cover inhibited the PM concentration. The downward trend of annual PM concentration is obvious, especially after 2017, and the hot spot gradually changed from southwestern to southeastern cities. This study laid the foundation for precise local government prevention and control by addressing both excessive effect factors (i.e., meteorological factors, air pollutants, vegetation cover) and spatial-temporal heterogeneity of PM.

Funder

Key Laboratory of Forest Plant Ecology, Ministry of Education Northeast Forestry University

China Scholarship Council

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3